
Kaemika? app
Integrating protocols and chemical simulation

Luca Cardelli

University of Oxford, UK.
luca.a.cardelli@gmail.com

Abstract. Kaemika is an app available on the four major app stores.
It provides deterministic and stochastic simulation, supporting natural
chemical notation enhanced with recursive and conditional generation
of chemical reaction networks. It has a liquid-handling protocol sublan-
guage compiled to a virtual digital microfluidic device. Chemical and
microfluidic simulations can be interleaved for full experimental-cycle
modeling. A novel and unambiguous representation of directed multi-
graphs is used to lay out chemical reaction networks in graphical form.

Keywords: Molecular Programming · Digital microfluidics

1 Introduction

Kaemika is a chemical reaction simulator, including a modern graphical user in-
terface and a functional programming language for platform independent (com-
mand line free) operation. It provides basic chemical and stochastic simulation
functionality, supporting natural chemical notation and enhancing it with the
recursive and conditional generation of chemical reaction networks. It innovates
primarily in the integration of liquid-handling protocols with chemical kinetics,
providing a unified semantics for laboratory procedures and the evolution of mul-
tiple chemicals samples. Based on a previously presented protocol language [1],
the app demonstrates its potential by compiling its geometry-free descriptions
to a virtual digital microfluidic device that interleaves droplet routing simu-
lation with chemical simulation, for full experimental-cycle modeling. Another
contribution is a regular and compact representation of directed multigraphs,
which includes a new representation of Petri nets but is further specialized for
presenting chemical reaction networks in graphical form.

2 Simulation of chemical reaction networks

Kaemika offers deterministic and stochastic simulation of chemical reaction net-
works, aiming for uniformity of techniques over all expressible reaction networks.
Mass action kinetics is used by default, but Hill, Arrhenius, and other kinetics

? /’kimika/, a homophone of the Italian word for chemistry.



2 L. Cardelli.

Fig. 1: Graphical user interface (macOS left, Windows UWP right). Script editor
(left), plot (top), reaction score (Mac, bottom right), microfluidics (Windows,
bottom right). Menus and buttons on the sides. Press Play to simulate.

can be expressed via common algebraic and elementary transcendental functions.
This includes supplying continuous and discontinuous input waveforms.

Stochasticity is supported via the Linear Noise Approximation (LNA [8]).
Numerical LNA simulations produce predefined displays for standard deviation,
variance, coefficient of variation, and Fano factor, and also programmable dis-
plays of (variance, etc., of) linear combinations of species using the correct statis-
tics. LNA numerical simulations can be applied to all expressible kinetics, which
would be hard to do with other stochastic techniques. LNA is supported also
symbolically, providing formal derivatives for the covariance of any pair of species
for all expressible kinetics (as long as the kinetic functions are differentiable),
which can then be externally studied analytically.

The focus on the LNA technique is due to its general and uniform appli-
cability, and to its relative speed and single-shot operation. The LNA is an
approximation of the chemical master equation, and we should complement it
with other techniques whenever possible. But the great convenience of the LNA
makes it, in my opinion, the default every-day solution, especially in the context
of dealing with any (multimolecular, Hill, etc.) reactions that a user may write.

While these simulation techniques are not particularly novel, they are applied
in a uniform and consistent way to facilitate experimentation, so that if a user
can write down a chemical model, then the tool can in fact simulate it at the
click of a button (within the numerical bounds of an ODE solver). An example
is the extension of the LNA semantics to liquid-handling simulations (which is
novel), where the noise present in a compartment is correctly propagated when
the compartment is split or merged with other compartments.

All this functionality is packaged in the interface as a single “play” button
for simulation, plus a toggle for the LNA, and a corresponding “stop” button.

3 Programmatic generation of networks and protocols

Despite their transparency and simplicity, chemical reaction networks become
awkward when they contain many reactions, many repeated subsystems, and
many parameters. This is a classical abstraction problem that has been iden-
tified and addressed long ago [10] and more recently [12]. Kaemika originated
from the desire to build “programmable” (arbitrarily parameterizable) reaction



Kaemika app Integrating protocols and chemical simulation 3

Fig. 2: Predator-eat-predator. Left: a program generating a variable-size chemical
network, reactions in red. Top: simulation plot for n=5. Bottom center: legend.
Bottom right: graphical representation of the generated reaction network.

networks, e.g. to study their algorithmic capabilities, and from frustration with
existing tools that did not seem to quite meet that need. (An option is to use
general programming or mathematical languages, at the cost of largely loosing
the notational convenience of chemical reactions.) Can there be an extension of
chemical reaction notation that makes it fully parameterizable?

Kaemika adopts modern concepts from functional programming to solve this
problem. First, there is functional programming itself for complete, higher order,
abstraction (“Can a species, or a network, be a parameter to a network?”). We
then use nominal semantics [6] to deal with the generation and lexical binding
of an unbounded number of unique chemical species (“If I create new species
inside a loop, can I plot them?”). Finally we use an output monad [11], which
is a somewhat grandiose but systematic scheme for generating a network of
chemical reactions from a functional computation (“Can I produce a network
whose size is determined by conditional execution?”). All answers are “yes!”.

A short example will have to suffice here. The “Predatorial” function in
Figure 2 creates a stack of predator-prey relationships in Lotka-Volterra style,
and returns the apex predator. To note: (1) the function is recursive; it internally
creates new species (‘prey’, ‘predator’), initializes them (‘@’), and returns them
(‘yield’), (2) the new species are ‘reported’ as they are created, so that they can
be plotted, (3) chemical notation (in red) is freely intermixed with flow control,
(4) ‘equilibrate’ runs a simulation and plots it, combining all the reports. The
‘equilibrate’ statement can be repeatedly invoked. Through some variations of
the ‘report’ statement one can also capture simulation timecourses, recombine
them within other simulations, and export them as data.

4 Visualization of chemical reaction networks

Automated layout of reaction networks (multigraphs) is usually highly unsat-
isfactory in the sense of hiding the symmetries of the network, and awkward



4 L. Cardelli.

in the sense of requiring constant panning and zooming. Kaemika uses a new
graphical representation of directed multigraphs with multiplicities, which are
those needed to unambiguously represent chemical reactions. In first instance,
the problem is the same as visually representing Petri nets; even here we appear
to be making an original contribution. In addition, catalysts are given a more
compact visual representation that extends the basic one for Petri nets.

We call this new representation a reaction score. Like a musical score it has a
set of horizontal lines, each associated with a chemical species rather than a pitch.
Reactions are added to the score in horizontally-bounded vertical tiles. Neither
the horizontal nor vertical orders are important (unlike in musical notation), and
it is useful to be able to manually or automatically reorder species and reactions
to cluster them in different ways. Each reaction A→ B is first recast in the form

Fig. 3: Reaction score. Horizontal lines are species, vertical tiles are reactions.
Blue/blunt are reagents, red/sharp are products, green/circle are catalysts. Note
some evident substructures and symmetries. On the right, for comparison, is the
same multigraph rendered by GraphViz, with ovals for species and squares for
reactions, already reduced as in the reaction score via catalytic edges.

C,A′ → B′ where for each species s if n∗s occurs in A and m∗s occurs in B, then
min(n,m)∗s are moved into C, and the rest are left in A′ or B′ (not both). The
reaction A′ → B′ is laid out as a Petri net transition and interconnected (the
Petri net places are stretched out as horizontal lines, and the transition “bars”
are placed vertically, or omitted in 1-input/1-output cases such as in Figure 3).
Additional catalytic connections, using a different visual style, are introduced
between the species in C and the stem (transition) of A′ → B′.

This representation is complete (any reaction network can be automatically
laid out) and unambiguous (the original reaction network can be recovered from
it, except for the reaction rates and initial conditions).

5 Protocols and digital microfluidics

The Kaemika system provides a virtual liquid handling device for the simula-
tion and visualization of protocols (Figure 1). We focus on digital microfluidics



Kaemika app Integrating protocols and chemical simulation 5

because of its generality, simplicity, and programmability, in that a single de-
vice can execute all the basic liquid-handling protocols [2] [13], and support
automated observation of the samples [9].

A Kaemika protocol contains information about the kinetics of the reactions
that naturally occur within samples, and also about laboratory manipulations
performed on samples [1]. The two are linked because lab operations affect con-
centrations, volumes, and temperatures, which affect kinetics. Correspondingly,
the execution of a Kaemika protocol intertwines the simulation of individual
reaction networks with the microfluidic manipulation of the samples, including
intertwining the plotting of simulations and the visualization of liquid handling.
The state of a sample at the end of a chemical simulation is propagated to the
following liquid handling operation, and conversely.

A typical digital microfluidics device has a rectangular array of electrically
controlled pads, and some means of adding and removing liquid droplets over
its surface. Injection and extraction may by done by hand, or by extruding
standard-size droplets from larger on-device reservoirs, or by pumps at the de-
vice’s periphery. The standard droplet size is around 1µL. Droplets can be moved
by changing the electrical properties of adjacent pads, and multiple droplets can
be moved in parallel. Droplets can be merged by causing one to move over the
pad of another, and split by electrically pulling them in opposite directions. An
overhead camera or an on-surface sensing apparatus may provide feedback about
the position of the droplets.

In a Kaemika droplet simulation, each “sample” (a container for species and
reactions) is represented by a droplet on the device. Mixing, splitting, and dis-
posing of samples is handled by appropriate routing of the droplets over the
device surface: this is automatic, and does not require geometric instructions.

Some physical assumptions are needed for timing, for observation, and for
the handling of temperatures and volumes. We assume that a region of the
device is maintained at a cool temperature. All the staging and mixing operation
are executed in this region, because chemical reactions are assumed not to be
happening during liquid handling: cool temperature and quick execution can
approximate those conditions. We also assume that another region of the device is
maintained at a hot temperature, and an intermediate region is at warm, ambient
temperature. Times passes, logically, only during “equilibrate” operations, which
move droplets into one of the warm or hot regions, according to need, hold them
there for the prescribed time, and then move them back to the cool region.
Observation capabilities (and subsequent feedback into protocols) are highly
hardware dependent [9]: we provide in the language general observability of
concentrations, but this will have to be matched to physical device capabilities.

6 Implementation and deployment

Kaemika is written in C# using the Visual Studio/Xamarin IDE, and is available
on four app stores: Windows UWP, macOS, iOS, and Android. A single Visual
Studio solution is used for all platforms, with shared application logic, compiled



6 L. Cardelli.

under either Windows or macOS; the source code is on GitHub [4]. The language
syntax is based on the Gold LALR parser generator [5]. The ODE solver is
OSLO [7]. The basic simulation functionality, including LNA, is common with
many other tools, e.g. [3] [10], which otherwise focus on other modeling aspects.
The main Windows and macOS GUI interfaces consist of two similar separate
forms; a separate GUI is used for mobile displays, with Xamarin providing a
unified interface to Android/iOS. Low-level graphics (lines, splines, fonts, etc.)
is shared across Windows/iOS/Android via Skia graphics, but separate from
CoreGraphics for macOS. XAML, which subverts lexical scoping, typing, error
accountability, and reliability in all applications, is painstakingly circumvented.

In practice, supporting multiple platforms is not hard, and software changes
propagate easily across them. Rather, the challenge is navigating the parkour-
like registration, provisioning, and app submission procedures of each app store.
Still, I strongly advise this path since it has huge benefits for users in terms of
tool installation, and also of usability (flawed GUIs are store-rejected). In the
end it has huge benefits for developers too, in terms of removing variability of
user configurations and all the related distribution and support issues, which I
found even more challenging than app store approvals.

References

1. Abate, A., et al.: Experimental biological protocols with formal semantics. In:
CMSB. vol. LNCS 11095, pp. 165–182. Springer (2018)

2. Alistar, M., Gaudenz, U.: Opendrop: An integrated do-it-yourself platform for
personal use of biochips. Bioengineering (Basel) 4(2), 45 (2017)

3. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: A tool for the
evaluation and reduction of ordinary differential equations. In: TACAS (2017)

4. Cardelli, L.: https://github.com/luca-cardelli/KaemikaXM
5. Cook, D.: Design and development of a grammar oriented parsing system. MSc

Project, California State University Sacramento (2004)
6. Crole, R., Nebel, F.: Nominal lambda calculus: An internal language for fm-

cartesian closed categories. ENTCS 298, 93–117 (2013)
7. Dalchau, N.: Open solving library for ODEs https://www.microsoft.com/en-

us/research/project/open-solving-library-for-odes/
8. Ethier, S., Kurtz, T.: Markov processes: characterization and convergence. John

Wiley & Sons (2009)
9. Freire, S.: Perspectives on digital microfluidics. Sensors and Actuators A: Physical

250, 15–28 (2016)
10. Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering

of living cells. Journal of the Royal Society Interface 6, S437–S450 (April 2009)
11. Petricek, T.: What we talk about when we talk about monads. The Art, Science,

and Engineering of Programming 2(2), 12 (2018)
12. Vasic, M., Soloveichik, D., Khurshid, S.: CRN++: Molecular programming lan-

guage. Natural Computing 19(1-2) (2020)
13. Willsey, M., et al.: Puddle: A dynamic, error-correcting, full-stack microfluidics

platform. In: ASPLOS (2019)


